A New Generation of Cost-Effective Bio-Based Succinate Plasticizers
BioAmber: A Renewable Chemicals Company

- Succinic Acid “Bio-SA™”
- 1,4-Butanediol “Bio-BDO™”
- Adipic Acid “Bio-AA™”

____________________________ TECHNOLOGY and SUSTAINABILITY ______________________________

- A renewable chemical company that produces chemicals by fermentation of plant-based sources.
- BioAmber has principle offices in Montreal and Minneapolis, MN.
- Shareholders include VCs such as Sofinnova Partners, Naxos, and strategic investors such as Mitsui&Co, Ltd and Lanxess
- Leverages open innovation and partnerships to accelerate development

* Trademark registered in Europe and Japan, pending in China, South Korea and Canada

© BioAmber, Inc. 2013. All Rights Reserved.
We Convert Sugars into **Renewable Chemicals**

Petrochemical Process

- Oil & Gas
- Butane / Benzene
- Maleic Anhydride
- 1,4-Butanediol

- Succinic Acid
- Gammabutyrolactone
- Tetrahydrofuran

Sugars + CO₂

- Fermentation
- Succinic Acid
- Conversion

- 1,4-Butanediol
- Tetrahydrofuran
- γ-butyrolactone

Simpler... Cheaper... Cleaner

© BioAmber, Inc. 2013. All Rights Reserved.
BioAmber’s technology is carbon neutral: will emit 100% less greenhouse gas than conventional technologies to produce petrochemical adipic acid.
BioAmber’s Bio-SA™ Plant (Sarnia, Ontario) Energy Savings

Energy Savings 60.9%

Riffel Consulting
*Field-to-Gate Energy and Greenhouse Gas Emissions Associated with Succinic Acid Produced At BioAmber’s Facility In Sarnia Ontario, March 2013
BioAmber’s Bio-SA™ Eco-Calculator

Calculate your way to green!
Introducing our Eco-Calculator

See the impact of substituting petro-chemicals with Bio-SA™

Quantity of Succinic Acid: [Blank]
Unit of Measure: Metric tonnes
Baseline: Petro-AA

Calculate Eco-Benefits

www.bio-amber.com
BioAmber Succinic Acid: A Platform Chemical

Bio-Based Succinic Acid: Large Addressable Markets
The Renewable Plasticizer Supply Chain

- **Biobased Succinic Acid**
- **Esterification & Formulation**
- **PVC Applications**

Biobased Succinic Acid - Renewable dicarboxylic acid building block

Family of bio-based succinate plasticizers

Performance evaluations with SolVin PVC resin
Succinate Esters

Plasticizer Performance Data
Dissolution Temperature (Acc. DIN 53 408)

- DOP
- BEHS
- DINP
- DOA
- DEHS
- DINS
- ODS
The succinates are efficient plasticizers providing a high hardness reduction.
Low Temperature Properties and Volatility

<table>
<thead>
<tr>
<th>Plasticizer 60 phr</th>
<th>Shore A Hardness After 1 week</th>
<th>Cold Flex</th>
<th>Volatility vs DOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>74</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>DINS</td>
<td>76</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>DEHS</td>
<td>73</td>
<td>+</td>
<td>o/-</td>
</tr>
<tr>
<td>BEHS</td>
<td>70</td>
<td>o</td>
<td>o/-</td>
</tr>
<tr>
<td>DOA</td>
<td>71</td>
<td>+</td>
<td>o</td>
</tr>
<tr>
<td>DINP</td>
<td>76</td>
<td>-</td>
<td>++</td>
</tr>
</tbody>
</table>

Excellent low temperature performance, similar to other dibasic acids
Volatility dependent on molecular weight
The succinates allow the production of low viscous, storage stable pastes. BEHS provides the option of a higher production speed.
Compact and Foam

Layer Evaluations

SolVIn®
The Partner in Vinlys
Compact Layer Evaluations

General Considerations:

- Transparent formulations (flooring-type, wear layers) were used for the evaluations (table below). Pastes were prepared in a speed mixer and de-aerated before assessment;

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolVin 382NG*</td>
<td>100.0</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>50</td>
</tr>
<tr>
<td>Ca/Zn thermal stabilizer</td>
<td>2.5</td>
</tr>
</tbody>
</table>

* K 82, microsuspension, low viscosity resin;

- Plasticizers were assessed regarding rheology, air entrapment/air release, gelation, thermal stability, weight loss, water pick-up, color, transparency and gloss.
Paste Rheology

Rheology Evaluations on Transparent Formulations Eta 1.4 - RS1

Viscosity (Pa.s)

DEHP DNP DIDP DNS DIDS ODS DEHS

To To+ 24h
Air Release Evaluations

- Pastes were assessed regarding air release/air entrapment according to internal methods.

- Air release is expressed in terms of the maximum height of plastisol column and the time to collapse this column (break of surface tension).

- As a rule, succinates are outstanding.

<table>
<thead>
<tr>
<th>Plasticiser</th>
<th>Column Height (mL)</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>96</td>
<td>71</td>
</tr>
<tr>
<td>DINP</td>
<td>96</td>
<td>71</td>
</tr>
<tr>
<td>DIDP</td>
<td>61</td>
<td>54</td>
</tr>
<tr>
<td>DINS</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>DIDS</td>
<td>23</td>
<td>11</td>
</tr>
<tr>
<td>ODS</td>
<td>98</td>
<td>61</td>
</tr>
<tr>
<td>DEHS</td>
<td>46</td>
<td>17</td>
</tr>
</tbody>
</table>
For air entrapment evaluations, after the de-aeration during 5 minutes, pastes are gelled in Werner Mathis oven for 2 min at 200°C (thickness: 0.3mm).

These pastes are then re-stirred during 1 and 5 minutes. The re-stirred pastes are again gelled in the same conditions as before. Photos were taken in the three conditions (the bubbles are the black spots) and grades attributed afterwards.

0 = good 5 = poor
Air Release Evaluations

DEHP

DINS

after air removal after 1 min of re-stirring after 5 min of air re-stirring

09077A/A3
DEHP - RE 898
Sans rémélange - 0' remélange

09077A/A3
DEHP - RE 898
1' rémélange

09077A/A3
DEHP - RE 898
5' rémélange

10007 B/A1
DEX 9 SU - Sans débullage
2010-02-12/03

10007 B/A1
Dex 9 SU - 1' débullage
2010-02-12/03

10007 B/A1
Dex 9 SU - 5' débullage
2010-02-12/03
Thermal stability of pastes was assessed regarding DHC (dehydrochlorination) and Metrastat.

- As a rule, succinates performed better than GP phthalates. ESBO is outstanding.

<table>
<thead>
<tr>
<th>Plasticizer</th>
<th>DHC* (min)</th>
<th>Metrastat** (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHP</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>DINP</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>DIDP</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>DIDP</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>ESBO</td>
<td>233**</td>
<td>19</td>
</tr>
<tr>
<td>DINS</td>
<td>34</td>
<td>28</td>
</tr>
<tr>
<td>DIDS</td>
<td>39</td>
<td>29</td>
</tr>
<tr>
<td>ODS</td>
<td>39</td>
<td>26</td>
</tr>
<tr>
<td>DEHS</td>
<td>28</td>
<td>19</td>
</tr>
</tbody>
</table>

* Time to reach a conductivity of 50 μS/cm
** We stopped after 233 min
*** Time to reach 60% of the original reflectance
Weight Loss for Transparent Formulations
100°C - Films 0.7 mm thick

- DEHP
- DINP
- DIDP
- DINS
- DIDS
- ODS
- DEHS

Weight Loss (%)
- After 4 days
- After 7 days
Foam Layer Evaluations

General Considerations:

- Foam formulations (flooring-type, decor layers) were used for the evaluations (table below). Pastes were prepared in a speed mixer and de-aerated before assessment;

<table>
<thead>
<tr>
<th>Raw Material</th>
<th>Phr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolVin 367NK*</td>
<td>100.0</td>
</tr>
<tr>
<td>Plasticizer</td>
<td>62.0</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>40.0</td>
</tr>
<tr>
<td>MB (50%) Porofor ADC+DINP</td>
<td>6.0</td>
</tr>
<tr>
<td>Rapid K/Zn kicker</td>
<td>2.0</td>
</tr>
</tbody>
</table>

* K 67, microsuspension, medium viscosity resin;

- Pastes were evaluated regarding rheology. Foams were assessed regarding density, cell quality, expansion rate and Yellow Index.
Rheology Evaluations on Foamy Formulations Eta 1.4 - RS1

- DEHP
- DINP
- DIDP
- DIN
- DID
- ODS
- DEHS

Viscosity (Pa.s)

- Eta 1.4 - To
- Eta 1.4 - To+ 24h
Foam Density

Foam Density at 200°C (2 minutes, 0.35 mm thickness)

Density (g/cm³)

- DEHP
- DINP
- DIDP
- DINS
- DIDS
- ODS
- DEHS

The graph shows the foam density for different compounds at 200°C. The densities range from 0.00 to 0.30 g/cm³. The compounds DEHP and ODS have the highest density, while DEHS has the lowest. The graph highlights the density values for each compound.
Expansion Rates at 200°C (2 minutes, 0.35 mm thickness)
Cell Quality

Cell Quality at 200°C (2 minutes, 0.35 mm thickness)

0 = good
5 = poor
Succinic Acid Ester Plasticizers

- Unique combination of properties - sustainability, performance and economics
- Family of plasticizers offering excellent cold flex, range of processing speeds, high efficiency
- Improved paste aging, excellent air-release and thermal stability in flooring formulations
- Sampling succinate plasticizers today
Thank You!

This information and our technical advice - whether verbal, in writing or by way of trials - are given in good faith but without warranty, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheets - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our control and, therefore, entirely your own responsibility. Our products are sold in accordance with the current version of our General Conditions of Sale and Delivery.