Download PDF
July 12, 2012

NIOSH eNews Includes Nanotechnology Update

Lynn L. Bergeson

The July 3, 2012, edition of the National Institute for Occupational Safety and Health (NIOSH) eNews includes a nanotechnology update, which states that the critical question to address is whether nanomaterials pose health or safety risks to workers employed in their manufacture and industrial use. The update includes the following “notable recent findings and areas of research”:

  • A peer-reviewed paper recently published by NIOSH researchers addressing five areas to help focus action to protect workers:
    • Review of the current evidence on the carcinogenic potential of carbon nanotubes (CNT), based on laboratory studies;
    • The role of physical and chemical properties related to cancer development;
    • CNT doses associated with changes to or damages in genes in laboratory animals and human tissue specimens;
    • Workplace exposures to CNT; and
    • Specific risk management actions needed to protect workers.
  • A study linking nanoparticle exposure to cellular responses associated with autoimmune risks. In laboratory studies, exposures to certain types of nanoparticles produced cellular changes that are associated with risks for disorders of the autoimmune system such as rheumatoid arthritis.
  • A recent paper highlighting the findings from an evaluation of the quality and completeness of information of nanomaterial safety data as it pertains to hazard identification, exposure controls, personal protective equipment, and toxicological information being communicated about the engineered nanomaterial. The study determined that the majority of the safety data sheets obtained in 2010-2011 provided insufficient data for communicating the potential hazards of engineered nanomaterials.
  • In a paper published in June, NIOSH researchers scrutinize the “oxidative stress paradigm,” a widely accepted scientific model for understanding the processes that in general are associated with cellular damage, to better understand the processes that can occur from reactions to nanoparticles. The answer to this question will have important ramifications for the development of strategies for mitigation of potential adverse effects of nanoparticles.
  • Recent findings indicating that improperly designed, maintained, or installed engineering controls may not be completely effective in controlling releases of nanomaterials into the workplace. Unprotected skin exposure to carbon nanofibers was noted in two instances and indicated the need for educating workers on the use of personal protective equipment.
  • A summary of emission data collected at four facilities that volunteered to serve as test sites. The measurements indicated that specific tasks can release engineered nanomaterials into the workplace atmosphere and that traditional controls such as ventilation can be used to limit exposure. Much research is still needed to understand the impact of nanotechnology on health, and to determine appropriate exposure monitoring and control strategies.